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Abstract. The fault detection process is modelled as a disturbance attenuation problem. The solution to this problem
is found via differential gate theory, leading to an He filter which bLounds the transmission of all exogenous sighals
save the fault to be detected. For a general class of linear systems which includes some time-varying systems, it is
shown that this tranmission bound can be taken to zero by simultaneously bringing the sensor noise weigliting to zero.
Thus, in the limit, a complete tranmission block can be achieved, making the game filter into a fault detection filter.
When we specialize this result to time-invariant systems, it is found that the detection filter attained in the limit is
identical the well known Beard-Jones Fault Detection Filter. That is, all fault inputs other than the one to be detected
(the “nuisance faults”) are restricted to an invariant subspace which is unobservable to a projection on the output.
For time-invariant systetus, it is also shown that in the limit, the order of the state-space and the game filter can be
reduced by factoring out the invariant subspace. The result is a lower dimensional filter which can observe only the
fault to be detected. A reduced-order filter can also be generated for time-varying systemns, though the computational
overhiead may be intensive. An example given at the end of the paper demonstrates the effectiveness of the filter as
a tool for fault detection and identification.

1. Introduction

The need for high reliability and low maintenance in complex systems such as the proposed intelligent vehicle highway
system will require self-monitoring and fault tolerance. Schemes to carry out these tasks generally fall under the
heading of health monitoring systems and without exception require a processor which uses sensor data to determine
the presence and origin of failures within the system. One concept of such a processor is the fault detection filter.
Often called the Beard-Jones Fault Detection Filter after its originators, the fault detection filter is a specially
designed observer which isolates the influence of each fault upon the state trajectory, making the simultaneously
detection and identification of failures possible.

Since its initial formulation, the fault detection filter has undergone many reinterpretations and refinements.
White [1] derived a detection filter design algorithm based upon eigenstructure assignment. Massoumnia [2] gave a
geometric interpretation of the filter and also derived a reduced-order fault detector based on geometric arguments
in [3]. Most recently, Douglas robustified the filter and derived a new version of the filter which bounds disturbance

transmission [4], [5], and {6].
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Common to all of these incarnations of the fault detection filter is an underlying structure of independent, invariant
subspaces which are matched one-to-one with a particular fault and which wholly contain the state trajectory when
the system is driven solely by that fault. Design algorithms have, thus, relied heavily on spectral methods - i.e.
specifying eigenvalues or eigenvectors. Spectral methods lead directly to the needed filter structure, but they limit
the applicability of the fault detection filter to linear, time-invariant systems and, due to their need for an accurate
plant model, their robustness to parameter variations can be poor {7]-

For these reasons, we have taken a different route to fault detection filter design. We look at the fault detection
process as a disturbance attenuation problem. The filter design, as a result, comes out of a differential game in
which the player is a state estimate and the adversaries are all of the exogenous signals, save the fault to be detected.
To approximate the invariant subspace structure of the fault detection filter, the game is one in which the player
attempts to exclude the adversaries from a specified portion of the state-space, assuming all the while that the
adversaries play their best strategy. The solution to this game results in an Hoo-type filter which bounds disturbance
transmission.

Since fault detection filters block transimnission, it would seem reasonable to expect that in the limiting case when
the H,, transmission bound is brought to zero, the game filter no longer approximates, but actually becomes a fault
detection filter. We will prove that this is indeed the case. In fact, for linear time-invariant (LTI) systems, we will
show that the game filter hecomes a Beard-Jones Fault Detector in the sense of (4): faults other than the one to be
detected are restricted to a subspace which is invariant and unobservable.

The filter that we propose lhere, however, is not merely an alternative algorithm for detection filter design. The
method we develop has wider applicability than existing design techniques. Time invariance is not assumed in the
game solution and so it can be shown that, for a class of time-varying systems, results analogous to the LTI case
exist in the limit as disturbance bounds are taken to zero. With this method, it is also possible to deal with model
uncertainty by treating such uncertainty as another element in the differential game [8], [9]. Finally, we will show
that with this approach the designer has the freedom to choose the extent to which the game filter behaves as an
H filter and the extent to which it behaves like a detection filter. This flexibility is unique to the game theoretic
approach to fault detection filter design.

Section 2 covers the basics of fault detection filter theory. We define a general fault detection filter problen
and show how the existing theory matches our definition for LTI systems. In Section 3, we pose a disturbance

attenuation problem which models the fault detection process for a large class of systems which includes some time-
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varying systems. The solution to this problems jeads to a game theoretic filter which bounds the transmission of all
exogenous inputs aside from the fault be detected. In Section 4, we analyze sufficient. conditions for our game cost
to be non-positive. This will enable us to show the existence of the filter in the limit and analyze its structure. In
Section 5, we return to tlie LTI case and prove that the detection filter that we find in the limiting case is equivalent
to the fault detection filter structures already existing in the literature. In Section 6, we use the limiting form of the
game theoretic filter to derive a reduced-order estimator for fault detection. These results apply to the larger class
of systems. Finally, in Section 7 we go through an example which shows that the filter is an effective fault detector

for finite values of the disturbance attenuation bound and in the limit.

2. Fault Detection Filter Theory

In this section, we introduce and define the fault detection filter problem. The existing theory for fault detection
filters is strongly tied to time-invariant systems and many of the key results of this theory depend on concepts which
do not carry over into time-varying systems. Hence, we make a distinction between the existing problem and a
definition that we propose for the fault detection problem based upon disturbance attenuation. We will show that

our definition matches the existing definition when applied to LTI systems.

2.1 Time-Invariant Fault Detection Filter Theory

Current fault detection filter theory is largely developed in [1], [2], and [4]. The geometric contol concepts upon
which much of the theory is based are developed in [10].

The systems that we consider here are linear, time-invariant with (C, A) observable:

(1) = Az(t) + Bu(t)
y(t) = Cx(1).

Linear maps are denoted by mathematical italics (e.g. M) and linear spaces by caligraphic text (e.5. M). Hence,
X, is the n-dimensional state-space; J is the m-dimenstional output space, and U is the k-dimensional input space.
A:X =X, B:lU— X, and C: X' — Y are matrices of appropriate dimesions and are typically called the state
matrix, the input matrix, and the output matrix respectively.

It has been shown in the cited references that faults in the sensors, the actuators, and even the plant can be
modelled as additive signals in the state equation:

q
j‘:AJ"PBH‘FZF)‘[lJ' (1)

i=1



The Fj : M; — [U's are called failure maps and are fixed, known maps which represent the directional behavior of
the fanlt. For an actuator failure, Fj is the corresponding column of the B matrix. For sensor failures [1}. F; is

derived from the corresponding row of the C matrix via:
y=Cux+ Eip;.

E; is an m x 1 unit vector corresponding to a failure in the ith sensor. To convert this failure into a form compatible

with (1), a two-column failure map [1]:

F=[f £} (2)

is used where f; is any vector such that E; = Cf: and fF = Af; - for time-invariant systems. For time-varying
systems, fi = Afi - fi. Why this is so will be explained later in this section.

The y;’s are failure signals and represent the time history of the failure signal amplitude. In nominal, no-failure
conditions, the s1;’s ate zero. Failure maps are generally assumed to be monic so that non-zero y; ’s result in non-zero

vectors, Fjp;. In addition to (C, A)-observability, it will also be assumed that the system is output separable [1):

rank [ CA%'Vy, ..., CAPV, | =4 3)
where:

V. = F; if i is an actuator fault,
*T 1 fi ifiis asensor fault

Output separability is a check that the problem is well-posed in the sense that the failures chosen in the design set
are linearly independent. F; is the failure map for actuator faults, f; is the vector defined by Equation 2, and §; is
the smallest integer such that CA%V; # 0. We make the distinction between actuator and sensor faults. because F;
has only one column for the former and two columns for the latter. If (3) is not satisfied, then the designer needs to
decide which failures he needs to discard from his design set. Note, that (3) is a time-invariant result. The analog

for the time-varying case would look like a grammian matrix.
Definition 2.1. The Fault Detcction Filter Problem as defined in [4] is to find subspaces W; C X" such that:

1. Each subspace contains the image of one and only one of the failure maps (F; := IimageFj):

Fcw; T (4)



2. The subspaces are oufpul scparable:
CW; Ny CW, = 0. (5)
i

3. The subspaces are (C, A)-invariant, i.e. there exists a map L : Y — X’ such that:

(A+ LC)W; C W; (6)

Note that the output separability requirement in (5) refers to the solution of the fault detection filter problem,
whereas the output separability specified by (3) refers to the well-posedness of the detection filter problem itself.
In [4] unobservability subspaces are used as the invariant subspaces for detection filter construction. Unob-
servability subspaces are the dual of controllablity subspaces [10] and are the unobservable subspaces, 7j, of the
pairs (ﬂjC,A + LC), where L is the observer gain from (6) and H ; is a matural projection such that ket / ;C =

z.-# 7: + kerC (kerC refers to the Kernal or Null Space of C). H ; can be found via:

B; = 1— (CA% F)(CA® Fy)T (CAP ;)7 (CAP E)T. ()

Again, B; is the smallest integer such that CA% F, j # 0 and

Fi=[FA ... o Fn ... Fy (8)

Roughly speaking, H ; blocks out the portion of the state-trajectory which lies in the other invariant subspaces.

Unobservability suhspaces are crucial for spectral design methods because for any such subspace, T;, both the
spectrum of (A + LC|T;) - the restriction of (A + LC) to T; - and the spectrumn of (A+ LC|X/T;) - the restriction to
the factor space - can be completely specified by L. If an invariant subspace other than an unobservability subspace
is used in a detection filter design, it is possible that some of the eigenvalues of (A+ LC) will be fixed by the invariant
zeros of (C, A, Fy). This could be problematic if these zeros are in undesirable locations. We will briefly discuss
invariant zeros and where they appear in the game filter in Section 5 so that our results can be directly compared to
existing detection filter design methods.

When the three given conditions are realized, the result is a Luenberger Observer:

i = Ai + Bu+ L(y — C7).

1\When there is only one unobservability subspace to consider, this means that the entire spectrum of closed-loop state matrix (A + LC)
can be specified. When more than one unobservability invalved, an extra condition called mutual detectability [1] is needed to specifly all

of (A + LC)



with error dynamics governed hy (¢ := 7 — 7):

g
é=(A+LC)e+ Y Fiu (9)

i=1

Equation 5 implies that yi; is restricted to an invariant subspace W; whose image under C is disjoint from all

other such subspaces. Hence, by the definition of flj and equations (4) - (9), the signal:

Zj:Hj(y—Ci:)::HjCC. (10)

will be driven solely by the fault jz;. A non-zero value of z; should simultaneuosly detect and identify the fault ;.
Given (10, we can derive tle sensor failure map for the time-varying case. A sensor fault leads to z = H,C% where

€ = e+ fip;. Differentiating €, gives us an equation in the form of (9), leading to the failure map:
S (A4 LOVE - Afus + s+ i = A+ 10+ [ £ 12 1{ 2 }

2.2 A Definition of the Fault Detection Filter Problem based upon Disturbance Attenuation

Let us now consider an alternative and more encompassing definition of the fault detection filter problem. Consider

a linear system in which ¢ possible faults have been modelled:

#(1)

1
A(t)=(t) + B(t)u(t) + Fi(thn (&) + Y Fi()mi?)
i=2

y(t) C()=(t) + v(?)-

It is desired to detect the appearance of ji; (the “target fault”) in the presence of sensor noise, v, and the possible
presence of other faults j;,i # 1 (the “nuisance faults”). Following the standard assumptions of section 2.1, we will
assume that each of the Fi’s are monic and that (C,A) is an observable pair. Also, since u is a known function
of t € [ta,t1], we will drop the Bu term for convenience. We will also neglect to explicitly show the possible time
dependence of the system matrices, though the reader should keep this possibility in mind. For convenience, we

define:

and use the definition of £; (8) so that the state equation becomes:

r=Ar+ Fyn + Fyjiy
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The definition that we propose is based upon disturbance attenunation. We use (10) and define the corresponding
residual signal z; associated with s as the output. signal. A disturbance attennation problem would be to limit the
transmission of the nuisance faults and the sensor noise to this output. For a fault. detection filter problem we want

to block this transinission entirely.

Definition 2.2. The Fault Detection Filier Problem is to find an estimator such that:

=2l _

12 =0
[zl

and:

E s

Tk

it
Cleatly, in the time-invariant case, the solution to the fault detection filter problem as defined by Definition
2.1 solves the general fault detection filter problem that we have defined above. Later on, we will show that these
definitions are equivalent. in the time-invariant case by showing that the solution to Definition 2.2 solves the problem
defined by Definition 2.1.
The definition that we propose is needed when we consider time-varying systems. In such cases, we cannot talk
about invariant subspaces and also observability becomes a trickier concept. Thus instead of defining the structure
of the final filter. we must content ourselves with merely describing its action.

Now, because we are dealing with time-varying systems, we must define our projector Hy appropriately:

H, =1-CB{(CB)T(CB)) HCB:)T (11)

where:
B, = F (12)
Bj = .-1Bj_1+B)‘..1 : (13)

and i € Z, is the smallest integer such that:

CBi #0 (14)

For time-invariant systems, (11) reduces to (7). Equations (12) to (14) come from the Goh Transformation [11]. We

will use the Goh Transforiation again in later sections. It will be assumed that the system matrices A1), C(t), ()

t



the number of iterations of (13) needed so that (14) is satisfied is constant over the entire interval, [to.11]. That
is, the time-variations of the system do not change the dimensionality of the detection problem. This restricts the
applicability of this analysis to a subclass of time-varying systems, but it allows us to avoid expending the eflort
which would be needed to deal with exceptional cases. Calling (11) a projector is a slight misnomer since it will be
a time-varying matrix, but by it’s construction it will be such that Ker H(t); = Ker C(t) + Im B; Vt € [to, 1]} which

is our main concern.

3. A Game Theoretic Filter for Fault Detection in a General Class of Systems

3.1 The Disturbance Attenuation Problem

We arrive at a solution to the fault detection filter problem as defined by Definition 2.2 by first solving the disturbance
attenuation problem. The solution to the fault detection filter problem then comes when we take the limit of the
disturbance attenuation solution. The results that we find here, however, are valuable in their own right. As we will
see, the game filter that we get from the disturbance attenuation problem is itself a useful filter for fault detection.

We begin by quantifying the probiem objective with a disturbance attenuation function, the ratio of the norm of

the output to the norms of the inputs. For this problem, the function is:

Dus = Jio WL O(e — £)1,
L Pl + 0l + IN:C(z — £l Jdt + llz(to) — Zoll?

where Ny : =T — H, and M,,V, Ry, Py are weighting matrices. The disturbance attenuation problem is to find an

(15)

estimator so that for all adversaries jia, v € La[ty, 1), #(0) € R™

Doy < v- (16)

We will refer to v as the disturbance attenuation bound. Once again, the assumptions that we will make are: 1)
(C, A) is a an observable pair 2) F;, i = 1...q is monic 3) i, the number of iterations of (13) needed so that (14) is
satisfied, is a constant.

To solve (16) we convert. it into a differential game with cost function:

h - o N o o ) N " -
J = / NHLC(x = )G, — YWzl - + lolly -0 + 1N Clz = 2l )4t = ll=(t) = Zolln, (17)
ta 4

Note that Iy := yP;!. We want to find:

minmaxmaxmaxJ <0 (18)
T v 2 t(‘ll)

subject. to:



7= Ar + Fijis. (19)

An element that is missing in our problem statement (17), (18), (19) is the target fault, ;. This is not an
oversight. It would seem logical to include enhancing the transmission of sy as part of the game, but there is no
obvious way to include such an objective in the game cost. Moreover, extremizing the cost with respect to u; leads
to assumptions upon the temporal behavior of the target fault. This can be quite detrimental to filter performance if
these assumptions are wrong (which is why fault detection filters are designed without any such assumptions). Thus,
since g1 is not part of the differential game, we set it to zero for convenience when we work through the solution.
This places the burden on the designer to make sure the set of faults that he chooses for the filter design leads to a

well-posed problem. Well-posedness is discussed in Section 2 and for LTI systems is easily checked by Equation 3.

3.2 Maximization with Respect to z(ty) and jiz

We will solve our problem in two steps beginning with the subproblem:

maxmaxJ < 0.
g2 z(ty)

The reasoning for this particular order of the extremizations is given in [12].
We begin by converting the sensor noise term llvlf3 -, to the equivalent |ly — Cz||%_, and by appending the
dynamics of the system to the cost with a Lagrange multiplier, AT :
‘l bl . ., ., d
J= / [IIHxC(J'—i')Ilb.—‘:(Ilﬂ-_'"ir;‘+|l.'/—C-'r£!i'-—‘+|IN10(J'-5')1|:§,)+'\T(AI+FU’1-.'—i)]di—|lr(iu)-iol|¥1“- (20)
ta
Integrate A+ by parts:
o
) " - 2 . PR
J = / I C (= = #)g, — Ciliallyg- + v = Crllf-s +{IMC(z = #)lIr,)
to
$AT(Ar + Fyjin) + AT 2)dt = ||z(te) — Follf, + Ata)T 2(ta) = A(11) = (t1) (21)
and then take the variation of (21) with respect to jiy and x(ty):

| 5 N R i
8J = / {{(x = HTCTATQUHLC + v(y — Cx)TVC = y(z = )T CTNT RiN.C + AT + AT Aléz
ta

i T MY+ AT FyJéje Yt — ((2(ta) = #0)T o + Ata)T)8x(t0) - AT 8x(ty). (22)



The above implies that first-order necessary conditions for J to be maximized are:

Y
—i = ATA+CT(ATQ AT = yNTR\N\)C(z — #) +¥CT V™' (y = Cr)
Ato) = Tafz(to) — o]

Substituting (23) into our dynamics (19) and using (24), we obtain a two point boundary value problem:

{@}_ A 1AM FT {:}+
AT | -CT(ATQ AT —yNTR\N,—qV-Y)C AT A

0
{ CT(ATQ AT — yNTRiN,)Cz —vCTV ™y } ’

If we assume solutions z* and A* to (27) and a quadratic form of the optimal return function, then:

A" =1(z" — z,)

(23)
(24)
(25)

(26)

(27)

(28)

where z, is a measurement dependent variable which will be shown to reduce to the estimate of the optimal state.

Using (28) and the first equation of (27), the second equation of (27) becomes:

. 1 - . N -
0=[0+ATII+0A+ ;HF‘M-,»F;TII +CT(HT QAT — yNT R\N, — 1V~ 1)C]z"
~Nz, = Nz, — AT0x, — CT(ATQAT —yNTRIN))C3 +1CTV ™y
Now, add and subtract yCTV-1C# and (A + CT(HT QAT ~ yNT RyNy — 7V ~1)Clz, to (29):
. 1. - . - -
0=[M+AT0D+NA+ -_;IIF, M, FTT 4+ CT(ATQ AT — yNT RNy — V= HC)(=™ — 2,)
_M#, — Az, - [CT(ATQLAT = yNT RiN, —1CTV=1)C)(@ = z,) +7CTV ™! (y - C3).

Thus, if we set:

-1

1 - . . N
ATn+ A+ ;HF;M-_»F‘ITH +CT(HTQAT — yNTR\N, — vV~ 1)C

N#, = MAz, — CT(HTQ AT — yNT RiNy =V~ 1)C(2 — z,) +1CT V™ (y - C2).

(30) is satisfied identically. (31) is an estimator Riccati Equation. If we set:

10

(29)

(30)

(31)

(32)



n=+pP ", (33)
we can convert (31) into:
. 1 - . . ;
P=PAT 4+ PA— PCT(V™' 4+ NTR\N; — :{-HlTQlH;r)CP + B\ Mo FT (34)

which is a Riccati Equation of the sort seen in (12],(13], and [14). (32) looks like an estimator, but its final form will

not become apparent until we solve the second half of the game problem.

3.3 Minimization with Respect to # and Maximization with Respect to v

The first part of our game solution led to optimal values for ¢ and x(to):

po= %Ppﬂfgﬁ?) (35)

=(to)" M5 A(to) + 2o (36)

If we substitute these optimal values into the cost function (17) we obtain a new cost, J, which is written as:

¥ " <> )
J= / [z = Mr i o vy roneyc — I Auaryr = 7lly = Collf-ldt = 1A (37)

Maximization of the cost with respect to v is unnecessary at this point. Since v = y—Crz and y is a given measurement

vector, v" is determined once =* has heen. Hence, the second part of the solution reduces to a single minimization:
minJ <0
r
To begin, we add the identically zero term:

" " oy "
AN y-s ~ Iy + [ MOt = 0
ta

to (37). After applying the boundary condition for A at (25) and carrying out the differentiation of the NN -

term, we get:

- s o o 9
J= 1 [“(I - I)”&T(I-ITQ.I?.—1NTR|N|)C - ”/\"%F.'MI:F";" - 7"-'/ - CI";’-'

AATI0DT 4 AT A+ AT At + (A - gy (38)

Note that (38) gives us a boundary condition for (31):

11



M(ty) = Mo (39)

Applying this boundary condition and substituting the differential equation for A, (24), into (38) leads to:

t‘ - - - - -
J= / AT (~AN-! = I7'AT - AAMoFT + YA + (= — 2)TCT(HT QuHh - INTRIN))C(z — £)
to
—(z - #)TCT(ATQ A, — yNT RyN)CII ™1 - ATn-1CT(ATQ Hy — yNT RiN)C(z — £) —

Y{(y = C=)TV-Yy = Cz)+ (y - Cz)T V' CI~ A + ATH' CTV ™ (y - Cz)Jet. (40)

From (31) the differential equation for I is:

O !'=-o'Mn ' =n'AT + AN + -}FPIM,F‘,T + 0-'CT(HTQ Ay — yNT RN, — 4V~ HCI™h. (41)

After we insert (41) into (40) and cancel terms, we are left with what turns out to be a pair of quadratic terms:

Jj= /“{[n-l,\ —(z - #)TCT(ATQ H, — yYNTRN)CT A = (z - 2)] -

AHCH A + (y = Cz))TVHCH™ ') + (y — Cx))}dt (42)
Now, use the solution for the optimal value of A (28) and substitute into (42) to get:

t) . ~
J=[ (G -=5)TCT(ATQ A1 — YNT RiN1)C(3 — 7p) — Y(y — C=p)TV ™y = Czp ). (43)

to

Because of the projectors H, and Ny, the minimizing value of £ is:

#* = r, mod ker H,C (44)

Using (44) as a guide, we rewrite (32) as:

Nz = NA#* +9CTV-}(y - C#") (45)

In (45) we have used #° = r, instead of (44). However, this choice is justified in that an adjustment of (32) in the
manner suggested by (44) would build in a bias to our estimate which would be better in the sense of the game but
not. in our ultimate objective which is to design a fault. detection filter. Since I is positive-definite for ¥ > 0, we can

rewrite (45) as:

i = AT+ M7 CTV Y (y - C#7) (46)
12



Alternatively, the analyst could use (34) and:

i = Ai"+ PCTV Yy - Ci"). (47)

This form of the filter is equivalent to (46), however; experience has shown that numerical problems are more likely to
be seen when trying to find a solution to (34) than (31) when ¥y is brought to extremely small values. For convenience,
we will use  instead of 7 when referring to the optimal state estimate with the understanding that it is the estimate
that comes from the game solution which is being used.

From (44) we can see how this game filter mimics a fault detection filter. # does better by inducing estimation
errors in the space defined by the projector H, than by trying to estimate the state exactly. This implies that
knowledge of the time history of jiz, either by measurement or estimation, is not needed.

The solution of the fault detection filter problem exists at the limit of the game solution when v is taken to zero.
Finding the solution or even showing that it exists is not a straightforward matter. In both versions of the game
Riccati Equation (31) and (34), there are terms which go to infinity as 7 goes to zero. Kwakernaak and Sivan (15},
studied a similar situation for the linear quadratic regulator. The linear-quadratic cost function in their problem,
however, is always non-negative while our game cost can be both positive and negative. Hence, their results are not
directly applicable here. Also, it is well known (14] that for game Riccati Equations, there is a minimum value of vy
for which the equation will yield a positive-definite solution. Below this critical value of ¥ any number of different
phenomena could occur (e.g. eigenvalues on the imaginary axis) which make positive-definite solutions impossible.

It turns out that we can resolve the second difficulty fairly quickly. By decreasing the noise weighting V to zero
along with v - i.e. V — 0 as 9 — 0 - we can find solutions to (31) and (34) for smaller and smaller y. What we get n
the limit turns out to be a singular filtering problem. This insight, in fact, is the key to resolving the first difficulty.
By using a pair of techniques from singular optimal control theory in the next section, we will be able to show the

conditions for the existence of the limiting solution and the nature of this solution when it exists.

4. The Limiting Case Solution via Singular Optimal Control Techniques

4.1 Conditious for the Nou-Positivity of the Game Cost: An LMI for the Game

In this section, we will find sufficient conditions for the non-positivity of the game cost. These conditions fall out
when we manipulate the cost slightly and then set r to its optiinal strategy found in Section 2. The game cost then

becomes a single quadratic foru:

13



J(F,z(ty), frz,v) = / ' TWedt (48)
t

©

where £ is some vector consisting of linear combinations of the gaine plavers. The non-negativity of the cost then
hinges on the sign definiteness of W, giving rise to a linear matrix inequality. Historically, this technique was first
seen in the singular optimal control theory [16] and {17] and the derivation seen here follows in that vein.

We begin with the cost function as given by (20). Note that the (z — #) terms have been combined:

LY
7= [ e = My guit o monpe = Miallzs = 7lly = Collosbit = ls(te) = 2ol (49
to

We now append the dynamics of the system to (49) through the Lagrange Multiplier (z — )7 1I:

131
_ =\|12 s 12 ’ 2
J= ‘/"n ["(:l: - IMIC"(H;’Q,FI,—-;NTR.N,)C - 7“”2"5{;1 - 7“3/ - Cz"V"‘ +

(z — 2)TI(Az + Fijaz — £)}dt — ||z(to) — Zollf,- (50)

Add and subtract to (21) the terms (z — #)TI1AZ and (z - #)TNz. Collect terms to get:

4
J= /t {”(1’ - i)II?TA+CT(I:I;"Q1I-ﬁ—1N;"R|N;)C - 7”/"2":-;[2-1 - 7“y - CI”%’—‘
+(z — &) TN Fyjin — (z — £)TI(# — £) + (= — £)T[NAZ — [Z]}dt - [|z(to) — Zollh, (51)

Note, we have moved IIA into the weighting ||(z — £)||2. As we continue along, new terms will be appear in the

weighting of ||(z — #)||*> as we manipulate the cost function. Integrate (z — #)TH(# — ) by parts:

L3
= ~\(12 - 12 2 AT
J = / {”(J‘ - I)”ﬂ'}-nA-}-CT(I‘lrQIl:il—‘vN‘TR|N|)C - 7"/‘2”;,;I - 7"3/ - CI“V-! + (27 - 2:) HFII‘Z
to

+H(z - #)T[MAF - IF) + (7 — #)T (= — 2)}dt = [}(to) - Fallfi,-nceny = N2(t1) = 2EMfigr,) (52)

Substitute the state equation for x (19) and add and subtract #FTATN(z - #):
t
— PaNTH - 02 AT A
J = 1 {”(J‘ - I)“h+nA+ATn+CT(I-f;rQ|f.I|—7A';'.R|N|)C - 7”"'.'”‘\,2—1 + (:r - I) HFII‘Z

+iTETT(r — #)T = lly = Cxllios + (= — #)T [-17 + MAZ) + [-[12

+MA#)T (r — £)}dt = [|7(to) — Fallf, - neey — 1(01) = ”(‘tl)“'-r'l(l.)' (53)

We are now going to manipulate the [jy — Cz||%_, term by adding and subtracting Cz inside of the term so that

it reads ||(y — C#) — C(x — #)||{,-,. Expand this quadratic term out and collect terms so that we end up with:

14



1, .

J = _/ = = M B A+ ATR4CTHT QT —ANT RN vV =1)C T 7'“"-’”34;' +(z = ) Fy i
to '

+iT ETN(z = #)7 = lly — C#lly—s + (= — £)T[-17 + NA2 +1CTV ™y - C2)]

—[[# + NAZ + +1CTV Yy = C&)]T(z — #)}dt — [|=(t0) - #ollfte—riqee) — 7 (t1) = (M)

Using (45) we can eliminate a pair of terms in (54). We are then left with a quadratric in the form:

T A
J'—‘/ ETWEdL — ||=(to) — Zallfy,-n(eo) — 17(t1) — =(t)lIngs,)-
tu

where:
(z — %)
§= B2
(y—C2)
and:
. CT(ATQ: Ay — vV~ = yNT RiN{)C + ATl +0A+0  0F 0
W= Frn —yM;? 0
0 0 T

Define the upper 2 x 2 block of W as:

i e | CTETQuUA -V = yN RiN)C + ATO+ A+ T D

For matrices I > 0 such that:

A
=

w(I)
Hn - n(t()) 2 0

I(t) >0

W is clearly negative semi-definite. Hence, we need only pay attention to the smaller LMI, W(II).

(56)

For v > 0, it is easy to see that the Riccati Equation (31) of the previous section is embedded in (56). In fact. the

solution of (31} is the solution of W(IT) which minimizes its rank [18]. Thus with (5G) and (45), we retain the results

of the previous section, but in a form which cau he easily analyzed in the limit. v — 0. If we define V =lim,_, =V

sufficient. conditions for J < 0 in the limit as ¥ — 0 are:

“F] = 0

1

M+ ATO+ DA+ CT(HTQH, -V )C £ 0.

15
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along with the boundary conditious (58) and (59).

(60) clearly shows that in the hmit, the Riccati Matrix, 11, obtains a non-trivial null space which contains the
image of the nuisance failure map, Fy. Moreover, those familiar with singular optimal control theory will recognize
(60) and (61) as conditions seen previously for the singular LQ regulator (see e.g. [16]). This tells us, first of all,
that the limiting form of this game filter is a singular filter. It is likely that similar results hold for game theoretic
(Ho) filters and controllers in general. Secondly, singular optimal control provides a wealth of results and insights

which we can apply to the analysis of this filter. This is, in fact, what we will do next.

4.2 A Riccati Equation for the Limiting Formn of the Game Theoretic Filter

Goh (see [11)) used a transformation on the control input space to derive a full-order Riccati Equation for the totally
singular linear quadratic regulator problem. By applying the same type of transformation on the nuisance fault input
space, we can obtain a similar equation for the limiting game filter. The existence of the solution to this equation
gives the condition for the existence of the game solution in the limit. We have already seen this transformation
applied to the construction of the time-varying projector, H,, (11). Because this Riccati Matrix must also have a
non-trivial null space, we will not be able to use the solution to this Riccati Equation directly in a game filter, but
this matrix will also prove to be useful when we look at reduced-order filters.
Ve start with-the game cost for the limiting case:

- _1; — — a2 - - 2
J _ll-ilz“]— t ”J' I“crﬂ;"q,ﬁxc ”y C:"’V*”“v

1 . - . .
where V_ := limy—o(7V)~!. Now, define a new nuisance fault vector, p, and a new state vector, ay:

t
m = / jia dt (62)
to
o, = - Fl[’l =z - Bl/’l (63)
Note that we have defined a matrix B, := Fy. The reason for the numbered subscripts will become apparent later.
Differentiating (63), we get.:
0y = Aay + (AB, - B\)p- (64)

as a new state equation and:

16



| 5} . R R .
J"= / ller = #r jyr g, g1, + (1 — #TCTHTQ H\CBipy + pT BTCTH] Q1 H1CBipy -
to !

2 o1 —-1 2
ly— Culll"'—,-n —(y- Ca,)™V CBipy — /)TB;TCTV (y=Cay) — ”I'IHJB;"CT\—'"'CB,] dt (65)

as the new game cost. Because H, is a projector constructed so that H,CF, = 0, we can simplify (65) to:

ty
. =12 ] —_1
J' = / (e — T’“C"H'{Q.fhc —lly - Cul||é,-_. —(y—Ca)™V CBip
ta

—1
- TBTCTV (y—Cay) - "Pl"é-‘rcrv-lcm] dt. (66)
Now, if B{CKT-V—ICB, > 0, we can solve the following differential game:

minmaxJ* <0
z [4]

subject to (64). Because of its similarity to the derivation given in section 3, we do not provide the solution here.

But if the interested reader follows the steps in section 3%, he will find that the solution leads to a Riccati equation:

_$=SA+ATS+CT(ATQ A, -V ')C +[S(AB, - B1) - CTV 'CB))

«(BTCTV='CBy)"'[(AB, — B,)TS — BTCTV 'C] (67)
with the boundary condition:

S(t()) = 0 (68)

. . 1 . . .
It may happen, however, that CB; = 0, which would make BTCTV 'CB, = 0 and which would invalidate our
Riccati Equation (67). The remedy to this situation is to perform the same transformation as before but on the py

input space via the recursion equations:

t
14 = / /l,'_;(“ (69)
ta
B = ABi.,—Bi_, (70)
Qay = Ir — B.‘/'.'. (71)

The process stops once a B; is found such that CB; # 0. The game 1s then:

ZHint: the first step involves converting y — Co into {(y — C7) + C(o = 1)
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1
i Jt = I = Calles — (1= Cal)TV ' CBipi
mi_l"":,?"-] —/l“ (llevi ’“crﬂ""q,n,c liy C"-"v—l (y=Cai)"V CBipi

=1 2
_p:rB:rCTL (y - Cﬂ'.) - “p‘"BTCTV-‘CB.] dt
subject to:

&; = Aa; + (ABi — B)pi.

The general form of the Goh Riccati Equation is then:

_$=SA+ATS+CT(ATQiE -V ')C +[S(AB: - Bi) - CTV 'CBi

x(BTCTV 'CB,)~[(AB: - B:)TS - BTCTV (]

(72)

(73)

(74)

The following theorem shows that (74) is a Riccati Equation for the limiting form of the game theoretic filter.

Theoremn 4.1. The solution S to (74) satisfies the sufficient conditions for the non-positivity of the game cost:

Equations 60 and 61.

Proof. (The proof given here follows Bell and Jacobson [16] (pg. 121). Due to its importance, we list it here.)

Clearly, (74) implies that:

S+SA+ATS+ CT(HTQH, -7 )C <0, vt € [ta, ty).

which is (60). Now, pre-multiply (74) by B; and add —B?S to both sides of the resulting equation to get:

—

—BTS$ - BTS = BTSA - B:S+ BTATS - BTCTV™'C + BT S(AB; - B;) - BTCTV 'CB]
(BT CTV 'CB:)~'[(AB: - B:)TS - CTV ' CB)
Rearranging terms leads to a differential equation in BT S with (68) as the boundary condition:

—-1

1 . — .
_&Z[B?‘S] = B,TS[A + B;FS(AB, - B.’)(B?‘C'Tv lCBi)_ll(ABi _ B,‘)TS - CTV CB,]

The solution to (77) given (68) is:

BT (1)S(t) = 0, Vt € [ta, 11]

(75)

(76)

(77)

The necessary condition (60) actually requires that f‘TS(t) = 0. However, since B; = F; and with the following

proposition, (60) is satisfied.



Proposition 4.2. Let 1 € N be the smallest nmumber such that CB; # 0. Then, the solution, S, to (110) is such

that

SB; =0, Vj <i, Yt € [ta, 1) (78)

Proof. That SB; = 0 is a result of the solution to the game and is analogous to the SF, = 0 condition found in
the solution to the original game. The proof that SB; = 0 for all j < i can be found in {19]. The proof used there
is an inductive argument which applies the same steps used above in Theorem 6.1 to prove SB; = 0Vt € [to,t;] to

show that the same holds for all j < 1. |

5. The Equivalence of the Game Theoretic Filter to the Beard-Jongs Filter in the
Limit ' o

In this section, we return to time-invariant case and show that for these systems the solution to the fault detection
filter problem as stated in Definition 2.2 also solves the problem as stated by Definitior 2.1 - i.c. limiting form of
the game theoretic filter is a Beard-Jones Fault Detection Filter. The required invariant subspace is the kernal of I.

To prove to this assertion, we first need a minor lemma:
Lemma 5.1. (kerll NkerC) C kerll
Proof. Let z € kerll NkerC. Pre-multiply (61) by rT and post-multiply by r. This leaves:
Tz <40
Since II can be negative or positive-definite, this can be true in general if and only if:
Tz =0,
which implies our proposition. [
Theorem 5.2. kerll is a subspace which solves the fault detection filter problem

Proof. The three conditions listed by Definition 2.1 are subspace inclusion (Equation 4), output separability
(Equation 5), and (C, A)-invariance (Equation 6). (60) clearly implies subspace inclusion. Since we are trying to

detect. only one fault, output separability is satisfied trivially. Thus, all that remains is to show (C'. A)-invariance.
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From Wonham [10], a necessary and sufficient. condition for kerll to be (C, A)-invariant. is that:
A(kerIl N kerC) C kerll
Therefore, let = € A(kerIl NkerC). That is, there exists a vector ¢ such that:
r=A¢ and I¢=C¢=0.
Now consider (61). If we post-multiply (61) by ¢ and use our lemma, we get:
MAc <6 = FTATHACLO.
Since II > 0, this means that:
TATNAc=0.
which implies that:
NAc=llz=0 = x€kerll

From this we conclude that A(kerIl NkerC) C kerll and so kerll is (C, A)-invariant. n

Remark 1. In actual practice, it is not necessary to use the limiting form of the filter. In many Ho, designs, ¥
is not taken to its smallest possible value, but left at one which @ults in an acceptable compromise between all of
the (usually competing) design ohjectives. The virtue of a game theoretic approach to fault detection filter design
is that it gives the designer a “knob” with which he can make the filter more like a Beard-Jones filter (small v and

small V) or more like an Hq filter with more emphasis on sensor noise attenuation (larger ¥ and V). |

Remark 2. It should be noted that a Beard-Jones fault detection filter can detect all of the y;'s. The filter that

we propose here can detect only one fault at a time. 1

Remark 3. Lee and Gibsou derive a filter for fault detection via linear quadratic methods in (7). They do not
discuss their work in relation to faunlt detection filters, but in many respects their final result is similar to the game
theoretic filter described here. Moreover, they also apply their work to the same example that we examine in the

next section with similar results. il
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In Section 2 we noted that nnobservability subspaces are used in current fault detection filter design methods
because they allow the designer to specify (within complex conjugate symmetry) all of the eigenvalues of the filter.
Such design freedom exists with these subspaces because they include any invariant zero directions which arise out
of the triple (C, A, ).

Invariant zeros [20] are those complex numbers A such that the system matrix:

P() = [ A—C,\I ﬁ(;, ]

loses rank. Invariant zero directions r are those complex vectors such that:

[ s l{i)-o

Invariant zeros are a concern in fault detection filter design because they cannot be eliminated by output injection
feedback, i.e. an estimator. Moreover, Douglas (Proposition 2.9 [4]) has shown that if we do not include invariant
zero directions in a (C, A)-invariant subspace, the corresponding invariant zero will show up as an eigenvalue in the
factor space when we try to design an estimator for the system.

In the next theorem, we will show that the game theoretic filter places invariant zeros in the kernal of II. Since we
have already shown that kerll is a (C, A)-invariant subspace, this theorem then implies that kerIl is an unobservability
subspace. For our purposes, this result is not as important as it is for spectral design methods since pole locations
fall out from the game solution. It does, however, connect this filter to existing detection filters by showing that
the invariant subspace formed by the game theoretic approach is the same kind chosen in standard detection filter
design algorithms.

The proof to the upcoming theorem is based on the fact that positive semi-definite, symmetric matrices such as
I always have non-singular, transformations - say ' - that are orthonormal (TTT = I) and that convert the matrix

into the form:

r_ [T O -
rnr_[oo] | (79)

L]

where 11 is positive definite. Define:

cr’=[ ¢ ¢»] rar?

Ay A - _ |
[A-.., A-..-..] ”“[Fp
Because ﬂFl = 0 implies T'T1 F’, = 0, we can immediately conclude that:
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: mo F =
T - 1 — —
rares, <[ 18] [ 5] =meu=o
V\"hich, since 11 is positive-definite, implies:
Fy, =0.
Theorem 5.3. The invariant zeros of (C, A, 1:"1) lie in kerIl

Proof.

Transform the system matrix P()) using the transformation matrix, I" described by (79):

r o A-2 F T o An =2 Ay 0
o 1 C o o 11=1 A Agp — M Fis (80)
C, C, 0

(80) clearly shows that if invariant zeros exist they can only arise from the triple (C3, A22, F12) which corresponds
to the subspace determined by kerIl. In fact, (80) shows that the only kind of zeros which could occur in the range
of I are output decoupling zeros [20] arising from values of A which make:

Ay = AI

Az
G

lose rank. However, since we have assumed that (C, A) is observable, these zeros cannot occur.

6. Fault Detection with the Limiting Form of the Game Theoretic Filter

In this section, we will show that a reduced-order fault detector can be derived from the limiting form of the game
theoretic filter. The results from this section are more easily applied to time-invariant systems, but we will give an
overview of how to apply these results to time-varying systems. For the moment, let us restrict ourselves the LTI

systems. Using the transformation, T, defined by (79), set:
1']:{ n }:I‘r‘.
12
Pre-multiply (45) by [ and make use of the identity Il = I to get:

(CATT)i) = (PATTYTATT )i + TCTV 'y - CTTw) (81)
22



The transformed filter equation (81) is seen to be:

[Tol{d=0 o] o s l{m){ & e-ta c1{ih e

From (82) we get a dynamic equation for 1;:

My, = AN + MAh + CTV—I(U = Ciin — Comp) (83)
and a static equation for #:
2= (CTV'Cy) ' CIV (v - Ciin). (84)
Define
K =TV ey tcIv! (85)

so that the substitution of (85) and (84) into (83) gives us an estimator for 7;:

1:)1 = Aufh + [H_IC'{V_X(I - Cg]i') + Alzl\,](y - leh). (86)

To see that the reduced-order estimator (8G) is unaffected by the nuisance fault fi,, we will derive the error

equation for the reduced-order filter. Define:

'I={:;:}I=FI e =m—m €=M — 12

We begin by premultiplying the dynamical equation (19) by the Riccati Matrix, II. Since [F, = 0, we get:

Ir = MAr.
This can be pre-multiplied by T' and manipulated into:

[Tl y=[T o) (a2 ){n} -

As with the estimator equation, (87) shows that only a portion of the state-space possesses dynamics:

Ty = TALm + TTA 29 (88)
Using (88) to get an error equation would leave terms in 2 or €;. In anticipation of this, we transform the measure-

ment equation:

y=Cr4+uv= CTTTa4+v=Cyp + Cupp + v (89)
23



and use (89) and (84) to solve for €:

s = (CTV ' Co) 1 (CTT  Crey + CTV '0) = K(Crey — v) (90)

Subtract (88) from (83) and substitute (89) for y:
ﬁél = ﬁAuC] +ﬁA12€2 -+ CTV-lclel + CITV—IC;.ez + CT_V—-IU

Using (90) and collecting terms, we can turn the previous equation into:

6 = [An = T CTV (I = CK)Cy = AiaKCiles + [T CTV (I = C:K) + AnaK]v. (91)

Note that nuisance fault, jip, appears nowhere in the estimator (86) nor in the error equation (91). Thus, in the

. . . 1 -

limit, we get a reduced-order estimator completely uninfluenced by the nuisance faults. The term (CTv Cy)!
appears in various places in the reduced-order estimator. This inverse will always exist since V is positive definite

and since the assumption of (C, A) observability guarantees that C will have full column rank.

Remark 4. The reduced-order filter derived here is similar to the residual generator derived by Massoumnia, et al.
in [3]. An important difference, however, is that Massoumnia begins his design process by factoring out the reachable
space of the nuisance faults. As a result, he has the freedom to use any kind of filter design technique for the lower
dimensional state-space. The trade-off, however, is that the system reduction in Massoumnia’s filter is sensitive to
the inexactness of the plant model. Variations in the plant will change the reachable subspace and may, as a resuit,
degrade the performance of the reduced-order detector. In the game filter, the order reduction comes at the end of
the design process. Thus, there is no design freedom left to tune the reduced-order filter, but the game formulation
used to obtain the filter makes it possible to account. for model uncertainties. Thus, it can be argued that the order

reduction used liere is more robust. 1]

The Goh transformation and corresponding Riccati equation greatly extend our ability to analyze the reduced-
order estimator. In fact with the Gol Riccati equation we can show that there always exist a stabilizing solution for

the reduced order estimator. Applying the transformation I' to (74), we get:

—S0T = PSITTALT 4+ TATTTTSTT + PCT(ATQ Hy, -V )CrT
+[PSTT(TATTTB; - T'B;) - rc™v - 'er'rB)(BTCTV 'cB)!

x[(TATTTB; - [B,)TTSIT —1CTV ™' Cr7 T By (92)
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Define:

_ | Bn
I‘B._[Bw].

As in section 5, the necessary condition SB; = 0 will lead to By, = 0 since [SITrB; =0 = SBy; =0and Sis
positive-definite. Also, if we carry the transformation through, a number of terms fall out because the projector H,

has been constructed so that:

HCB; =0 = H\CTTTB; =0 = [ ;,Ci H:C: ] [ 301—, ] =0 = HC:B12=0 (93)

We we show later that B; can always be augmented so that Bja is an invertible square matrix. Hence (93) impiies:

HiCa=0. (94)

Using (94) and working through all of the transformations leads to:

-3 0]=[§_4u 541..] [A,Tg 0] [§A123,,-§3u]_ CTV 'CuB12 |
0 0] 0 ATS o 0 CTV 'C3Bs2
[

x(BLCIV ' CB1x)™! ( [ BhAwLS - BuS o]~ BLervier BLCIVcT |

. [ CTHTQ, -V )G, -CTV 'C, ]

-cIv g -chV"c:2 (%3)

From (95) we get three equations:

=1

=CT(HTQ\H, - v he +35A0 + AT S+ (SA;B12 — $B-CTV Cy Bl")(B;r'.'C{V—lC'-’B”)—I
X(§_413312 —EB“ ——C'{V-lchl-_»)T )]
-1

= _CTV'Cy + SAys — (SA12B1» - 5By - CTV ' CT Bua)(BL,CTV ™ CaBi2)” 1gT.cTV 'C,  (97)

0= ~CTV ' Cs 4+ CTV ' C2B1a( BT,CTV ' C2B1) ' BL,CTV 'Ca. (98)

However, if we post-multiply (98) by B;z and cancel terms we obtain the identity 0 = 0. If we post-multiply (97) by

B, we obtain:
0=S58, = Bu=0. 199)

Thus, we need only (96), which thanks to (99) can be simplified to:



5= CT(ATQ H, -V ")C1 + SAu + ATS + (SA1By: - CTV ' C2B1z)
x(BE,C;rv-102312)“1(§A,2B,2 - ClTV—‘CzBlz)T- (100)

Now if i=1, then B; = Fy and the rank of 1) equals the dimension of the kernal of S. B2 = F1, will then be square

and, moreover, it will be invertible since F, was assumed monic. Given this, we can simplify (100) to:

—S=CT(ATQH, -V )Ci + SAn + AT,S + (SA12 - CTV ' C)CTV ' o) 'S An - CTV 'C)T (101)

S(te) =0 (102)
where the boundary condition comes from (68). This leads us to the key result of this section.
Theorem 6.1. The solution S to (101) gives a stabilizing solution for the reduced-order estimator (86).

Proof. Using the same transformation to derive both (101) and (86) will ensure that 5 is of proper dimension for

(86). Substitute S into (86) directly for M. The resulting estimator is:

i = (An - [ CTV I = G K) + ApKIC)i + (57 CTV (I - C2K) + AnKly. (103)
where K = (cT .V—ICz)"lC;r v Clearly, the stability of the estimator depends upon the closed-loop state matrix,
(A — [:S'—IC({V—I(I — C2K) + A12K]Cy). Now, if we go back to (101), multiply out the quadratic, and use the

definition for K, we get.:

5= S(An - ARG+ (A — A:KC)TS+CTHTQ B, -V (I - C2K))Cy +S5A4.(CTV ' Ca) 1 ATS. (104)

If we add and subtract CTV_I(! — CaK)C) to (104) and rearrange terms we get:

——1 —-1

—5 = 5(A11 - AKC =57 CTV (I = C1K)C1) + (An — AiKCy - 5TV (I - CK)C)TS

=1

+CTIATQ H, + V(I = C2K)|Cy + SAR(CTV T Co)  ALSIC  (103)

Note that C,TV“(I — C4K)C) is symmetric. (105) implies:

—=-1

T4+ 3(An — Ak Cy =57 CTT (1 = CoK)C1) + (A — AizKCy =S CTV (1 - C.K)C)TS <0, (106)

——1

which by Lyapunov’s Direct Method [21] implies that (A;; — ApKCy - :S'--IC',TV (I — C2K)Cy) is stable. For

time-invariant systems, this implies that the closed-loop eigenvalues lie in the open left-half plane. ([
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What happens, however, when i > 1 and dim(kerS) > rank B,?7 The matrix B2 will no longer be square and the
reduced-order Riccati Equation will be stuck in the form of Equation 100 which is not the same as what is needed
in the proof for stability (Equation 101). It would thus seem that we cannot guarantee stability in the general case.

It turns out, however, that by augmenting the failure map in the original problem statement, we can always
convert the reduced-order Riccati equation into the desired form (101). The necessary augmentation turns out to

be:

71 = [ B,‘ B.’_1 B| ] (107)

The new game problem for the limiting case is:

t
- - _ — a2 . -ICTHTQ, A, CF,i 7,12 - .=
n‘:.‘nn.‘.“_?x‘] - ‘/'a ["r t"c‘rﬂrqlﬂlc +(z .t) c Hl QlHl Fxl‘z + "l‘I"fTCrH‘{Ql”lCFl

—1 = _ =T ——1 —
—lly = Czli3-1 - (y = C=)"V CFifiy - il F,CTV (y-Cz)- ||p,||;;r crv-icF, )4t (108)

subject to:

i=Ar+ Fijiy (109)

where Ji, is the augmented failure signal which has many inputs as there are columns in F,. Note, that here we have
gone back to the pre-transformed problem (where the state is z, not ;). We will show that this new problem leads
to a Riccati equation which is equivalent to (74). In this equation, however, the reduced-order version is easily seen
to reduce to the desired form (101). The equivalence of the two equations then implies that the same reduced form
holds for both.

The augmented failure map, F, is such that CF; # 0, thereby stopping the transformation process after one

iteration. The solution to this game leads to a Goh Riccati Equation:
_$ = SA+ATS + CT(ATQy#, -V~ 1)C + [S(AF, = F1) - CTV ™' CFy]
T AT -1 4F. _ F\T T ~r7!
x(F,CTV CF) '\ (AF, -F))’S-F,C"V (] {110)

with a boundary condition given by (68). The solution, S, to (110) is such that dim(kerS) = rankF,. Hence. after

the transformation and defining:



the reduced-order Riccati Equation:

_5=CT(HTQ,H, -V ")C1 + 541 + AL,S + (SAnF12 - CTV ' C,F12)

X(FoCTV ' CoF12)" (S A Fi2 = CTV  CiF1a)- (111)

can be simplified to (101) because F 12 is square and invertible. We know that F,2 is square and invertible because
the construction of F; ensures that F: has full column rank and that the size of ker S, which determines the order

reduction, is equal to this column rank.

Proposition 6.2. The Goh Riccati Equation of the augmented system (110) is equivalent to the Goh Riccaii

Equation of the original system (74).
Proof. It is immediate that

CFi=C|[ Bi Bicy ... Bi|=CB; (112)
If we examine the term SAF; — -i:'_l in (110):

S(AF,—-F,) = SA[B: Bicy ... Bi|+S[ B Bisx ... B

[ SAB; - SBi,SABi_, - SBi,...,SAB, — 5B |

[ SAB:; — SB:,SBi,SBi-y,...,5B: |.
Because of Proposition 4.2, this simplifies to

S(AF, — F1) = S(AB; - BJ). (113)
Given, (112) and (113), the Goh Riccati Equation for the augmented system (110) simplifies to (74). [

Reduced-order filters for the time-varying are much harder to come by since the transformation matrix, I', will
now be a function of time. In this case, the only likely option left to the analyst is to use the results of [22] which give
differential equations for the eigenvectors and eigenvalues of the solution to a time-varying Riccati Equation. From
here the reduced-order Riccati Matrix, the transformed system equation, and finally the reduced order filter can be
formed through a transformation matrix based upon the eigenvectors. Needless to say, the computation required
here will be quite intensive. The state and measurement matrices will also have to be transformed at each time step

and only then can the filter be formed and propagated. The point here is that it is possible to find a reduced filter
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for the time-varying case, though the effort may outweigh the benefits. Since the full-order filter is always available,
this is not a serious problem.

The analyst has many options when designing a game theoretic filter. In the case of the full-order filter he
has the freedom to choose the different weighting matrices and y. For reduced-order filters, he can use either the
solution to the Goh Riccati Equation (74) or the solution of linear matrix inequality (56) with ¥y = 0 to find the
needed transformation matrix and reduced-order filter gain. He also has the reduced-order Riccati Equation (101). 7
Moreover, he can mix the two approaches (e.g. using the LMI to find the transformation matrix and using the
reduced-order Goh Riccati Equation to find the gain). This flexibility is important, because the solution to the
Goh equations may be ill-conditioned when several iterations of the Goh Transformation are needed to generate the
Riccati Equation. The appearance of powers of A in the resulting equation may cause problems with the numerical
solution. Thus, though the Riccati solution represents the saddle-point solution, it may not be the best choice from

numerical considerations.

7. Example: Accelerometer Fault Detection for the F16XL

7.1 Problem Statement

To demonstrate the effectiveness of the game theoretic filter, the F16XL example of [5] is re-examined. The aircraft
dynamics are linearized about. trimmed level flight at 10,000 ft altitude and Mach 0.9. For simplicity, a reduced-order,

five-state model of the longitudinal dynamics (including a first-order wind gust model) is considered:
# = Ax + Bw,,,

y=Cr+v.

The five components of the states are:

u long. velocily (ft/sec)
w normal velocity (ft/sec)
r= q pitch rate (deg/sec) (114)
] pitch (deg)
wy wind gust (ft./sec).

The measurements are:

q pitch rate (deg/sec)
_ [ pitch (deg)
V=13 4, long. acceleration (ft/sec?) (115)
Ar normal acceleration (ft/sec?).

The input, Wy, is windgust and v is the sensor noise. v is also assumed to be weighted by V = v1;. The resulting

system matrices are:
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—.0674 0430 — 8886 —.5587 0430
0205 —1.4666 16.5800 —.0299 —1.4666

A= 1377 -16788 -.6819 0  —106788 (116)
0 0 1 0 0
0 0 0 0 -1.1948
BT={0 0 0 0 2015 ], (117)
0 0 1 0 0
C= 0 0 0 1 0 (118)

0.0139 1.0517 0.1485 —0.0299 O
—0.0677 0.0431 0.0171 0 0

It is desired to detect a normal accelerometer fault, A,, in the presence of the wind gust disturbance and the
sensor noise. Following the modelling techniques described in section 2, we incorporate the accelerometer faults into

the system by modifying our state equations to:

i = Ar+ Buwy, (119)

y = Cz+Es a, +v. (120)

where E,=[0 0 1 0 ]T and ji4, is the acceleromter failure signal. We then convert (119) and (120) into:

T = AI + FA.I‘A. + ngl‘wg (121)

y = Cr+uv, (122)

Fug is simply Bug; ftwg 1S the wind gust, wye. The failure map, F4, and the failure signal p4, are:

0.6003 0
0.9429 -1.3706
Fa, = 0 —1.5003 | jpa, ={ " }
0 0 2
0 0
Finally, the natural projections on the filter residual are:
05330 0 -0.4982 —0.0264 )
o - 0 1 0 0
= I = (CAFu)(CAFug)(CAFu T MCAFW) = | o499 0 04685 —0.0281 (123)
—0.0264 0 -—0.0281 0.9985
0.4670 0 0.4982 0.0264
; . - 0 0 0 0
Ny =1 fy = (CAFu(CAFu)T (CAF T (CAR) = | 44980 ¢ 05315 0.0281 (124)
0.0264 0 0.0281 0.0015
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7.2 Full-Order Filter Design

Equation 34, the Riccati Equation in terms of P, was used for this example, though we could have just as easily used
(31), the Riccati Equation in terms of II. To bring sensor noise weighting, V (= vI), to zero with the disturbance

bound, it is assumed that v is some multiple of 7. By trial and error, it. was found that:
-8 v
v=5x10"8% —-=2, Q=R =My=1
Y

gave the results seen in Figure 1. For the given parameters above, the solution of (34) is:

019161 —.25047 —.20981 —.00448  11.059
25947 7.5971 7.1863  .076754 —376.33
P=10"%x | —.20981 7.1863 7.9932 011879 —428.83 |, (125)
—.00448 076754 .011879  .00397  —.098976
11.069 —376.33 -—428.83 —.098976 45255

resulting in a gain:

—2.0981 -0.0448 -3.0364 -0.16068
71.863 0.7675 90.511 4.679
L= 79932 0.1188 87.416 4.6062
0.1188 0.0398  0.8230 0.0381
—4288.3 —0.9897 —4593.1 —243.02

~40f -

-60} -

Magnitude (db)
&
=)

~100f -

Frequency

Figure 1: Frequency Response of Accerometer Fault vs. Frequency Response of Wind Gust. (solid line - output due
to fi4,; dashed line - output due to si,,,)

Figure 1 is a plot of the Euclidean Norms of the signal z; := H,C(y—C7) due to the y14, and ji,g. The pertinent

transfer functions are:
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21(%)
1a.(s)

= HC(s] — A+ LC)"'LE,.

z1(s)

Hug(s)

= H,C(sI - A+ LC) ' Fy

It can been seen that at least 130 dB of separation exists between the output due to the wind gust and the output

due to the accelerometer fault. This should be satisfactory.

20 ' T ! T

Magnitude in db

migenvector 1 : :
120 ; H ; ;
107" 10" 107 107 107 10°
nu

Figure 2: Inner Product of the Closed-Loop Eigenvectors and Fault Direction 1

The asymptotic convergence of the game theoretic filter to a fault detection filter structure can be demonstrated
with the analysis of [4]. In that filter, the closed-loop eigenvectors are placed in such a way that for each fault j its
complementary detection space, Fi= > iziFi is decimated. The complementary detection space is spanned by the

faults which are not meant to be seen. This condition can be represented by the linear equation:

AT — Al cT Vi 0
[“E =] 2
From (126) we conclude that:
(AT - ADVi+ CTWe = 0 (127)
FTv, = 0 (128)
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Figure 3: Inner Product of the Closed-Loop Eigenvectors and Fault Direction 2

The robust fault detection filter as described in [5] uses a result from [23] that W; and V; are related through a gain

matrix:

w; = LTV
leading to the following conditions:
(AT+CTLT -2V, = 0O (129)
FTv; = o (130)

We can conclude from (129) and (130), therefore, that in a fault detection filter the complementary fault directions
are perpendicular to the closed-loop eigenvectors.

In Figures 2 and 3 we employ Equation 130 and examine the eigenstructure of the game theoretic filter as the
parameters v and v are taken to zero (y = #/2). Figure 2 shows a plot of F,:‘TgV,' ( = 1...3) where V; are the
eigenvectors of (A + PCTV~!C). Figure 2 shows that the closed-loop eigenvectors (two in particular) Pecome
perpendicular to the directious of Fq. Siuce we have designed the filter to block out the transmission of ji,, to a
portion of the state-space, this is the result. we would expect.

Figure 3 shows that the closed-loop eigenvectors do not align in directions norinal to the space spanned by Fju,.

Decreasing values of 4 seem to have no effect on alignment, in fact. Since this is the fault that we want to detect,
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this 1s the result that we want to see.

7.3 Reduced-Order Filter Design via the Goh Riccati Equations

\Ve now repeat the example, but now we will design a lower order detection filter using the Goh Riccati Equations.
The first step is to derive the transformation matrix, I'. Since the transformation is determined via the null space of
the full-order Riccati Matrix, the design process begins by finding the solution to the full-order Goh Riccati Equation

(74). Because CF; = CB) =0, we need to go to a second iteration (i = 2), in which we find that:

B, = ABy = AR (131)

Using (131) and the same weightings as in the full-order design, we find that the solution to the Goh Riccati

Equation (74) is:

—4.6032 7.0275 —6.0662 —123.5565 —0.2697
—5.2351 2.5842 —2.2990 -—48.2081 —0.1353
S= 4.4622 —2.0830 1.8578 39.0486 0.1115 (132)
85.2718 —36.2789 32.4847 698.8667  2.0423
—0.0098 0.0079 —0.0069 —0.1432 —0.0003

Using the QR decompostion we find obtain a transformation matrix:

—~0.0537 —0.9954 —0.0763 —0.0175 0.0091
—0.0611 —-0.0667 0.7407 0.5738 —0.3374
IT=| 00521 0.0332 -0.6631 0.6384 —0.3860 (133)
09953 —0.0596 0.0761 0.0009  0.0001
—0.0001 —0.0007 —0.0062 0.5128  0.8585

Using this transformation, we reduce our state-space to a third-order system (i.e. we find the matrices Ay, C; ete.).
From here we employ the reduced-order system matrices in the reduced order Goh Riccati Equation, (110). The
soltution to (110) using (133) is:

—14.6664  5.2528 0.1179
—0.2469 0.1179 0.0035

[ 219.8389 —14.6664 —0.2469
S= (134)

with a corresponding gain:

—0.3211 0.1887 0.0068 0.1483
84710 —7.2336 4.3827 -5.6715

—~0.0066 0.0061 0.0005 0.0033
L= (135)

The closed-loop eigenvalues are —0.0375 + 0.01285, —5.1698. Compare this to the eigenvalues of the full-order filter
which are: —0.0344 4+ 0.0448;, —88.40+88.57j, —14.9142. To demonstrate the eflectiveness of the reduced-order filter
a linear simulation of the system was run for two cases: one with a accelerometer fault input (modelled as a step)
the other with a windgust input (also a step). Figures 5 and 4, shows that the reduced-order filter responds to the

accelerometer fault input and is relatively insensitive to the wind gust mput.

34



0.5 T T T T T Y \

Magnitude

i I 1

0 05 1 15 25 3 35 4

2
Time (Seconds)

Figure 4: Reduced-Order Goh Filter Residual due to step in u4, (fault to be detected)

7.4 Reduced-Order Filter Design via the Linear Matrix Inequality

We will now demonstrate yet. another design algorithm. Compared to the previous design, this approach requires

more work and judgement from the engineer, but the final filter design is very effective and in some cases the approach

may be numerically more reliable.

The linear matrix inequality (56) was solved in the steady-state case using software for semi-definite programming

software3. For v = 0 and the same weighting matrices as the full-order design, it. was found that:

3.4282 —0.1842 0.2482 6.4511  —0.0000
-0.1842 1.0263 -0.9014 -17.1934 -0.0000
= 0.2482 —-0.9014 0.7978 15.1839  0.0000 (139)
6.4511 —17.1934 15.1839 301.6193 —0.0000
—0.0000 —0.0000 0.0000 —0.0000 0.0000

Using the eigenvectors of the Riccati matrix (136), we obtain the following as a transformation matrix:

0.0211 0.0002 0.0575 09979 -0.0215
—0.6823 —0.0058 —0.7266 0.0575  0.0568
T=| —0.7307 -0.0066 0.6804 -0.0249 -0.0502
—0.0026  0.0000 -=0.0769 -0.0170 -0.9969
—0.0088 1.0000  0.0003 —0.0000 0.0000

Following the results of the previous section, we choose the reduced-order estimator to be 3rd order, with the

corresponding reduced Riccati Matrix:

3uGP" developed at Stanford University by Stephen Bayd and his students
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Figure 5: Reduced-Order Goh Filter Residual due to step in g4 (nuisance fault)

3.3129 -0.0000 0.0000
=] —-0.0000 3053302 -0.0000
0.0000 —0.0000 0.0633

The resulting gain is:

0.0162 —0.0035 —0.0133 —0.0005
L=| —06843 0.0740 0.6642  0.0130 |. (137)
178.7185 —10.9610 —169.0275 —5.8971

The closed-loop poles are —0.0347 £0.0448, —243.4 (Note that the dominant second-order pair of the full-order filter
has been retained).

Again by simulating the reduced-order system, we find in Figures 7 and 6 that the reduced-order filter works
effectively as a fault detector for an accelerometer fault in the presence of a windgust fault. Figure 6 shows that the
reduced-order estimator is sensitive to ji4,, the accelerometer fault. whereas Figure 7 shows quite clearly that the

reduced-order filter is unaffected by the presence of a windgust fault (the residuals are on the order of 107°).

8. Conclusions

By solving the fault detection problem via disturbance attenuation. we obtain a game theoretic filter that bounds
the transmission of disturbances and nuisance fanlts. By going to the limit of this solution, we get a fault detection

filter which in the time-invariant case is equivalent to the Beard-Jones Fault Detection Filter. That is, the presence
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Figure 6: Reduced-Order Filter Residual due to step in g4, (fault to be detected)

of the nuisance faults is restricted to an invariant subspace that can be made unobservable through a projection.
This unobservable subspace can be factored out of total space to get a lower-order system which is uninfluenced by
the nuisance faults. The same factoring process can then be applied to the game filter to get a reduced-order fault
detector for the newly reduced state-space. Extensions of this latter result exist for the time-\-'arying case, though
the computation involved may be intensive.

The game theoretic approach to faiilt detection filter design is more flexible and applicable than current design
methods. The designer can choose the degree to which the game filter possesses the structure of the Beard-Jones
filter. This allows him to make tradeoffs between nuisance fault blocking and sensor noise rejection. The linear
quadratic game used to solve the disturbance attenuation problem admits time-varying systems and can be used to
incorporate parameter uncertainty into the filter design. Recent extensions of robust control such as designs which
constrain pole-placement. and designs with multiple objectives (e.g. the so-called mixed H2/Hoo problems) suggest
that the same can be done here. The latter is of particular interest since it appears to be a logical way to detect and
identify multiple faults with a single game theoretic filter.

Finally, we have shown that the limiting form of the game filter is a singular filter. Since any disturbance
attenuation problem can be solved in the same manner as this one, it is likely that this result applies to all such

problems. That is, the limiting form of a disturbance attenuation problem is a singular optimization problem. This

37



x 10
3 T T T T T T T
2. ..................................... _ ....................................... 4
1y , .................................... ........................................ ..
k<) : :
@ : :
= : : :
E 0 ...................... Y S S =
o : : M
£ : : :
8 : :
g_] T e Tereseraians feeasrnananes Feeeeeneann e eaeans N AERARE .
[ : N N
=} : : :
[} : | :
= : ; :
-2} ., N = ......................... ....................... -
) ST -.._ ...................... ....................... i
- - H H H i ; A :
0 05 1 15 2 25 3 a5 4
Time (seconds)

Figure 7: Reduced-Order Filter Residual due to step in .y (nuisance fault)

makes applicable a wealth of results from singular control and it provides a new way to understand Ho, problems

by looking at them as “almost” singular optimal comtrol problems.
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